<u>Instructor</u>: James Hunt, Director of Marine Sciences at East Stroudsburg University

Required Materials:

- Marine Biology: an ecological approach by J.W. Nybakken & M.D. Bertness
- dedicated notebook for field log/lab notes

<u>Course purpose</u>: marine ecology is a sub-discipline of marine science that investigates the relationship of organisms and their environment. As such, it requires a comprehensive review of many areas of marine biology as well as physical and chemical oceanography. The focus of this course is on field methods and quantitative data analysis. Though calculators are permitted, students will be expected to understand how to apply mathematical tools to datasets, how to approach a variety of questions in ecology, and begin to appreciate the creative process that is at the core of all scientific inquiry.

<u>Course goals</u>: by the end of this course, you should be able to: 1) identify the major ecological systems in the oceans and define the unique characteristics for survival and the dominant organisms found in each, 2) use a variety of field and lab methods (including biodiversity indices) to analyze ecological questions and 3) have an increased understanding and appreciation for the intricacies of oceanic ecology.

Grading:			Course Grading Scheme:
_	3 one-hour exams	75%	A = 90 - 100%
	Lab & Field work	25%	B = 80 - 90%
			C = 70 - 80%
			D = 60 - 70%
			E = below 60%

<u>Exams</u>: there will be three exams during the course. Each will be worth 25% of your final grade. Reading the textbook will be essential to doing well on the exams. Although material in class will highlight the reading, we cannot cover all aspects presented in the text in detail in the classroom.

<u>Laboratory & Field work</u>: this is obviously a class where work in the field and laboratory will be important. Students will be given assignments to complete either independently, in small groups, or sometimes as a class. Your individual participation therefore is essential for a successful class project, and for your own lab & field grade. You will be required to keep a lab & field notebook of your observations, data, lab work, and general information. I will collect these notebooks before the end of the course and assign a grade for your work based on completeness, organization, and clarity. Grades from your notebook, homework assignments, and participation in class will all be reflected in a final lab & field grade worth 25% of your final grade.

Daily Syllabus

Day	Topics	Reading/assignments		
Monday, June 11	PM: Introduction to the course; Review water structure and properties Basic Ecology and Oceanography	Chapter 1		
Tuesday, June 12	AM: estuaries; salt marshes PM: describing distributions	Chapter 8		
Wednesday, June 13	AM: Field Trip: Chincoteague Park PM: Plankton; Larval ecology; biodiversity indices	Chapter 2		
Thursday, June 14	ALL DAY PARKER CRUISE			
Friday, June 15	AM: Lab work on plankton PM: TBA	Study for Exam I!		
Monday, June 18	AM: EXAM I PM: Subtidal benthic communities	Chapter 5 (minus seagrasses)		
Tuesday, June 19	ALL DAY MONITOR CRUISE TO TOM'S COVE			
Wednesday, June 20	AM: Lab work from Tom's Cove PM: Deep-sea Ecology	Chapter 4		
Thursday, June 21	AM: Intertidal ecology PM: Field trip, intertidal	Chapter 6		
Friday, June 22	AM: tropical ecosystems PM: TBA	Chapter 9 Study for Exam II!		
Monday, June 25	AM: EXAM II PM: seagrasses, behavioral ecology, nekton	Chapter 3 Seagrasses from Chapter 5		
Tuesday, June 26	ALL DAY MONITOR CRUISE TO GREENBACKVILLE			
Wednesday, June 27	AM: lab work from Greenbackville Human impacts PM: Field trip: Wallops Island schedule permitting	Chapter 11		
Thursday, June 28	AM: Global Ecology/Future Work PM: Lab clean up	Field and lab notes collected		
Friday, June 29 AM: Exam III				